Skip to content

bgc_data_processing.water_masses

Objects related to water masses.

WaterMass(name, acronym=None, ptemperature_range=(np.nan, np.nan), salinity_range=(np.nan, np.nan), sigma_t_range=(np.nan, np.nan))

Water Mass.

Parameters:

Name Type Description Default
name str

Water mass name.

required
ptemperature_range Iterable[float, float]

Potential temperature range: (minimum, maximum), by default (np.nan, np.nan)

(nan, nan)
salinity_range Iterable[float, float]

Salinity range: (minimum, maximum), by default (np.nan, np.nan)

(nan, nan)
sigma_t_range Iterable[float, float]

Sigma-t range: (minimum, maximum), by default (np.nan, np.nan)

(nan, nan)
Source code in src/bgc_data_processing/water_masses.py
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
def __init__(
    self,
    name: str,
    acronym: str | None = None,
    ptemperature_range: Iterable[float, float] = (np.nan, np.nan),
    salinity_range: Iterable[float, float] = (np.nan, np.nan),
    sigma_t_range: Iterable[float, float] = (np.nan, np.nan),
) -> None:
    self.name = name
    if acronym is None:
        acronym = "".join(word[0].upper() for word in name.split(" "))
    self.acronym = acronym
    self.ptemperature_min = ptemperature_range[0]
    self.ptemperature_max = ptemperature_range[1]
    self.salinity_min = salinity_range[0]
    self.salinity_max = salinity_range[1]
    self.sigma_t_min = sigma_t_range[0]
    self.sigma_t_max = sigma_t_range[1]

name = name instance-attribute

acronym = acronym instance-attribute

ptemperature_min = ptemperature_range[0] instance-attribute

ptemperature_max = ptemperature_range[1] instance-attribute

salinity_min = salinity_range[0] instance-attribute

salinity_max = salinity_range[1] instance-attribute

sigma_t_min = sigma_t_range[0] instance-attribute

sigma_t_max = sigma_t_range[1] instance-attribute

__repr__()

Represent self as a string.

Returns:

Type Description
str

Name and boundaries.

Source code in src/bgc_data_processing/water_masses.py
46
47
48
49
50
51
52
53
54
55
56
57
58
def __repr__(self) -> str:
    """Represent self as a string.

    Returns
    -------
    str
        Name and boundaries.
    """
    name_txt = f"{self.name} ({self.acronym})"
    temp_txt = f"PTemperature in [{self.ptemperature_min},{self.ptemperature_max}]"
    saln_txt = f"Salinity in [{self.salinity_min},{self.salinity_max}]"
    sigt_txt = f"Sigma-t in [{self.sigma_t_min},{self.sigma_t_max}]"
    return f"{name_txt}\n{temp_txt}\n{saln_txt}\n{sigt_txt}"

make_constraints(ptemperature_label, salinity_label, sigma_t_label)

Create the constraint for the water mass.

Parameters:

Name Type Description Default
ptemperature_label str

Potential temperature label.

required
salinity_label str

Salinity label.

required
sigma_t_label str

Sigma-t label.

required

Returns:

Type Description
Constraints

Constraint corresponding to the water mass.

Source code in src/bgc_data_processing/water_masses.py
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
def make_constraints(
    self,
    ptemperature_label: str,
    salinity_label: str,
    sigma_t_label: str,
) -> Constraints:
    """Create the constraint for the water mass.

    Parameters
    ----------
    ptemperature_label : str
        Potential temperature label.
    salinity_label : str
        Salinity label.
    sigma_t_label : str
        Sigma-t label.

    Returns
    -------
    Constraints
        Constraint corresponding to the water mass.
    """
    constraints = Constraints()
    constraints.add_boundary_constraint(
        field_label=ptemperature_label,
        minimal_value=self.ptemperature_min,
        maximal_value=self.ptemperature_max,
    )
    constraints.add_boundary_constraint(
        field_label=salinity_label,
        minimal_value=self.salinity_min,
        maximal_value=self.salinity_max,
    )
    constraints.add_boundary_constraint(
        field_label=sigma_t_label,
        minimal_value=self.sigma_t_min,
        maximal_value=self.sigma_t_max,
    )
    return constraints

extract_from_storer(storer, ptemperature_name, salinity_name, sigma_t_name)

Extract a the storer whose values are in the water mass.

Parameters:

Name Type Description Default
storer Storer

Original Storer.

required
ptemperature_name str

Potenital temperature variable name.

required
salinity_name str

Salinity Variable name.

required
sigma_t_name str

Sigma-t variable name.

required

Returns:

Type Description
Storer

Storer whose values are in the water mass.

Source code in src/bgc_data_processing/water_masses.py
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
def extract_from_storer(
    self,
    storer: "Storer",
    ptemperature_name: str,
    salinity_name: str,
    sigma_t_name: str,
) -> "Storer":
    """Extract a the storer whose values are in the water mass.

    Parameters
    ----------
    storer : Storer
        Original Storer.
    ptemperature_name : str
        Potenital temperature variable name.
    salinity_name : str
        Salinity Variable name.
    sigma_t_name : str
        Sigma-t variable name.

    Returns
    -------
    Storer
        Storer whose values are in the water mass.
    """
    constraints = self.make_constraints(
        ptemperature_label=storer.variables.get(ptemperature_name).label,
        salinity_label=storer.variables.get(salinity_name).label,
        sigma_t_label=storer.variables.get(sigma_t_name).label,
    )
    return constraints.apply_constraints_to_storer(storer)

flag_in_storer(original_storer, water_mass_variable_name, ptemperature_name, salinity_name, sigma_t_name, create_var_if_missing=True)

Flag the.

Parameters:

Name Type Description Default
original_storer Storer

original storer.

required
water_mass_variable_name str

Name of the water mass variable.

required
ptemperature_name str

Potential temperature variable name.

required
salinity_name str

Salinity Variable name.

required
sigma_t_name str

Sigma-t at pressure 0 variable name.

required
create_var_if_missing bool

Whether to create the water mass variable in the storer., by default True

True

Returns:

Type Description
Storer

Copy of original storer with an updated 'water mass' field.

Raises:

Type Description
ValueError

If the water mass variable doens't exists and can't be created.

Source code in src/bgc_data_processing/water_masses.py
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
def flag_in_storer(
    self,
    original_storer: "Storer",
    water_mass_variable_name: str,
    ptemperature_name: str,
    salinity_name: str,
    sigma_t_name: str,
    create_var_if_missing: bool = True,
) -> "Storer":
    """Flag the.

    Parameters
    ----------
    original_storer : Storer
        original storer.
    water_mass_variable_name : str
        Name of the water mass variable.
    ptemperature_name : str
        Potential temperature variable name.
    salinity_name : str
        Salinity Variable name.
    sigma_t_name : str
        Sigma-t at pressure 0 variable name.
    create_var_if_missing : bool, optional
        Whether to create the water mass variable in the storer., by default True

    Returns
    -------
    Storer
        Copy of original storer with an updated 'water mass' field.

    Raises
    ------
    ValueError
        If the water mass variable doens't exists and can't be created.
    """
    constraints = self.make_constraints(
        ptemperature_label=original_storer.variables.get(ptemperature_name).label,
        salinity_label=original_storer.variables.get(salinity_name).label,
        sigma_t_label=original_storer.variables.get(sigma_t_name).label,
    )
    full_data = original_storer.data
    compliant = constraints.apply_constraints_to_dataframe(full_data).index
    if original_storer.variables.has_name(water_mass_variable_name):
        water_mass_var = original_storer.variables.get(water_mass_variable_name)
        water_mass_label = water_mass_var.label
        data = full_data[water_mass_label]
        data[compliant] = self.name
        full_data[water_mass_label] = data
        return Storer(
            data=full_data,
            category=original_storer.category,
            providers=original_storer.providers[:],
            variables=original_storer.variables,
        )
    if not create_var_if_missing:
        error_msg = f"{water_mass_variable_name} invalid for the given storer."
        raise ValueError(error_msg)

    data = pd.Series(np.nan, index=full_data.index)
    data[compliant] = self.name
    new_var = NotExistingVar(
        water_mass_variable_name,
        "[]",
        str,
        np.nan,
        "%-15s",
        "%15s",
    )
    new_storer = Storer(
        data=full_data,
        category=original_storer.category,
        providers=original_storer.providers[:],
        variables=original_storer.variables,
    )
    new_storer.add_feature(new_var, data)
    return new_storer