Super-resolution of satellite observations of sea ice thickness using diffusion models and physical modeling

Julien Brajard, Anton Korosov, Fabio Mangini, Adrien Perrin, Richard Davy, and Yiguo Wang

Context

High-resolution model simulation of Sea ice thickness in the Arctic (3 km resolution)

The resolution we can observe (~90 km resolution)

Objective of SuperIce

Low resolution image of sea ice thickness

Neural Networks

High-resolution images

We use diffusion models to generate an ensemble of high-resolution sea ice thickness.

Good accuracy and realism of the generated fields.

Please visit my poster for more details **#13**

Super-resolution

Motivation

Sketch of the project

Motivation

Physical model (NeXtSIM) forecast

Satellite observation product (CS2SMOS)

Satellite product does not resolve small scales in sea ice thickness (e.g. leads)

Why is it important?

Case 1: Predictability

Forecast skill Detrended correlation coefficient of Sea ice extent in Chukchi Sea

Initialization using Sea ice concentration observations only

Initialization using Sea ice concentration observations + Sea ice thickness only

> Black dot means not significant Courtesy of N. Williams

Case 2: Surface fluxes

Overview of the project

Step 1: Dataset constitution

Principle: Filtering of NeXtSIM simulations

Dataset:

- 5 input features (low-pass filtered) 1086x1308
- 529 samples, from 18-10-2013 to 15-04-2023 (Only Oct-Apr)
- Training: 2013-> Apr. 2020 (1157 samples)
- Validation/test Oct. Oct. 2020-> 2023 (540 samples)

Apply diffusion model to sea ice thickness super-resolution

Used for Al image generator (Ex: Midjourney)

Source: https://aituts.com/midjourney-camera-prompts/

Apply diffusion model to sea ice thickness super-resolution

mask

0.5

4

1.0

Generative

Used for AI image generator (Ex: Midjourney)

deformation

-3 -2 -1

0.0

Observable low-resolution images

thickness

concentration

0.5

0.0

1.0 0

A generated high-resolution image

Principle of the diffusion model

Source Ho et al. 2020 https://arxiv.org/abs/2006.11239

Principle of the diffusion model in SuperIce

Implementation details

Model Residual Neural network f(x,z,t)

Training algorithm

- **1**. Draw a HR image y and a LR context x in the training set
- 2. Draw a diffusion time t between 0 (full signal) and 1 (full noise)

Х

- **3.** Draw a white Gaussian noise ϵ
- **4.** Compute diffusion angle: $\gamma = \gamma_{min} + t. (\gamma_{max} \gamma_{min})$
- **5.** Compute the signal and noise rate: $r_s = \cos \gamma$, $r_{\epsilon} = \sin \gamma$
- **6.** Compute the noisy image: $z_t = r_s \cdot y + r_{\epsilon} \cdot \epsilon$
- **7.** Predict the noise by the NN: $\hat{\epsilon} = f_{\theta}(z_t, t, x)$
- 8. Predict the image: $\hat{z}_{t-1} = (z_t r_{\epsilon}, \hat{\epsilon}) / r_s$
- 9. Compute the loss on the noise: = $L(\theta) = \|\epsilon \hat{\epsilon}\|^2$
- 10. Minimize L

Learning curve

Results

<u>Results of the 10 January 2021</u>
<u>Results of the 23 October 2020</u>
<u>Global results</u>

Results of 26 January 2021

Generation of high-res SIT and residuals

Generation of an ensemble

0.2 -0.2

0.0

0.0

Truth

Results of 26 January 2021 (zoom)

Generation of high-res SIT and residuals sit_lowpass log_deformation_0 sic_lowpass mask 0.5 0.5 1.0 0.0 0.0

0.2 -0.2

0.0

0.2 -0.2

0.2

0.0

Generation of an ensemble

Results of 26 January 2021

Results of 26 January 2021

Accuracy

$\widehat{\bigcirc} \ \mathbf{esa} \qquad \underbrace{}_{\mathbf{Nersc}}$

Spectrum 26 January 2021

Power Spectrum Density as a function of the diffusion time (Step)

Spectrum

Signal to noise

Spectral ration = PSD (reconstruction-truth) / PSD(truth)

Spectrum

Power Spectrum Density

Spectral ratio = PSD-reconstruction / PSD-truth

— Truth

- 5 - 10

- 40

- 100

10¹

Sensitivity to the number of diffusion steps

In the other sections, 40 steps are used

Results of 23 October 2020

Generation of high-res SIT and residuals

Generation of an ensemble

Truth

Results of 23 October 2020 (zoom)

Generation of high-res SIT and residuals log_deformation_0 sic_lowpass sit_lowpass mask · áb 0.0 0.5 0.0 0.5 1.0 -5 0 SIT incr. SIT 0.2 -0.2 0.0 0.2 -0.2 0.0 0.2 -0.2 0.0 0.2

0.0

Generation of an ensemble

Link to 26 January 2021

Results of 23 October 2020

Spread and reliability

Accuracy

Results of 23 October 2020

Link to 26 January 2021

Spectrum 23 October 2020

Power Spectrum Density as a function of the diffusion time (Step)

Spectrum

Signal to noise

Spectral ration = PSD (reconstruction-truth) / PSD(truth)

Spectrum

Power Spectrum Density

Spectral ratio = PSD-reconstruction / PSD-truth

Sensitivity to the number of diffusion steps

In the other sections, 40 steps are used

Globals results

-1

Residual Vs full field generation

Residual generation

-1

Ò

Full-field generation

NN (1)

Full-field induces large-scale biases