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1. Introduction

Machine learning (ML) has recently emerged as a data-driven technique to mitigate
dynamical prediction errors. Two prevalent approaches include constructing an
ML-dynamical hybrid model (Gregory et al. 2024) and post-processing/calibrating
model output (Palerme et al. 2024). The former iIs considered as online error
correction, while the latter refers to offline error correction. In this study, we
utilized the two ML-based error correction methods to the Norwegian Climate
Prediction Model (NorCPM) for seasonal prediction of Arctic sea ice.
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Figure 1. Schema for the online and offline ML-based error correction methods. The pink line
represents the truth. The gray line represents dynamical prediction without error correction. The
purple (blue) line represents prediction with online (offline) ML-based error correction. The
purple dashed arrows indicate pauses during the prediction production, facilitating correction to
the instantaneous model state.

2. Data and Methods
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Table 1. Information about OnlineML and OfflineML models

Input features Instantaneous SST, SSS, latitude, Monthly SST, SSS, latitude, SIC
5 categories SIC and sea ice and sea ice volume
volume

Output features Instantaneous SST, SSSand5  Monthly SIC prediction error
categories SIC errors

Data The most recent eleven years data (ten years for training and one
year for validation)

Remark Only apply to sea-ice covered grids in the Arctic with SIC values

greater than 1%.

® Running training:

We employed a running training set approach using data from the most recent 11 years. For
example, to build an error correction model for January 2019, data from January 2009 to
January 2017 is used for training, and data from January 2018 for validation.

® Reanalysis as the truth

3. Results

3.1 Error correction model performance
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® Machine learning can learn the
~10 model error.

3.2 Pan-Arctic SIE prediction skill
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Figure 3. (a) RMSE of the Reference hindcast, and ARMSE of SIE between (b) Reference and
OnlineML hindcasts, (c) Reference and OfflineML hindcasts. Warm colors (red/yellow) indicate
areas where error-corrected hindcasts perform better than the Reference, while cold colors
(blue/green) indicate areas where they perform worse. The black dots represent regions where the
ARMSE does not pass the 95% significance test.

3.3 Regional SIE prediction skill
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® Improvements vary by target
months and regions;

® The improvement mainly in
margin regions.
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Figure 5. RMSE of the Pan-Arctic and five subregions SIE for Reference (gray bar), OfflineML
(blue bar), OnlineML (purple bar) hindcasts.

3.4 SIC prediction skill
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Figure 6. Differences between SIC RMSE of Reference and OfflineML initialized from July.
Warmer (colder) colors indicate that the OfflineML prediction performs better (worse). The
hite color indicates the differences don't exceed significant test.
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