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Motivation

Physical model (NeXtSIM) forecast Satellite observation product (CS2SMOS)

Satellite product does not resolve small scales 
in sea ice thickness (e.g. leads)



Why is it important?

Case 1: Predictability Case 2: Surface fluxes 

Courtesy of N. Williams

Black dot means not significant
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Steps of the project
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Step 1: Dataset constitution

Principle: Filtering of NeXtSIM simulations

NeXtSIM sea ice thickness
11-01-2020 (res 4km)

Filtered sea ice thickness
(res ~ 120 km)

Convolution constant 
kernel (size 120 km)

Concentration
(res ~24km)

Thickness
(res ~120km)

Deformation
(res ~120km)

Mask
(res ~4km, no smoothing)Dataset:

- 4 input features (filtered)
- 529 samples, from 01-01-2020 to 30-09-2020
- Training: 10-10 -> 20-09 (509 samples)
- Validation 04-10-> 09-10 and 21-09->26-09 
(12 samples)

Observation product (CS2SMOS)
11-01-2021



Apply diffusion model to sea ice thickness super-resolution

Source: https://aituts.com/midjourney-camera-prompts/

“man walking dog at dusk --ar 4:3”

Generative 
diffusion model

Used for AI image generator (Ex: Midjourney)

A prompt A generated imageObservable low-resolution images

concentration thickness deformation mask

A generated high-resolution image



TARGET

Principle of the diffusion model

concentration thickness deformation mask

NN NN NN

White gaussian noise Generated image

The low-resolution “context”
(low-resolution fields)



Implementation details

Model Residual Neural network f(x,z,t)

NN

Low-res context (x)

High-res noisy image (z)

Diffusion time 0 < 𝑡 < 1

High-res denoised image

Sinusoidal 
embedding

Residual UNET
(3.9 millions parameters)



Training algorithm

1.Draw a HR image y and a LR context x in the training set

2.Draw a diffusion time t between 0 (full signal) and 1 (full noise)

3.Draw a white Gaussian noise 𝜖

4.Compute diffusion angle: 𝛾 = 𝛾𝑚𝑖𝑛+ 𝑡. (𝛾𝑚𝑎𝑥 − 𝛾𝑚𝑖𝑛)

5.Compute the signal and noise rate: 𝑟𝑠 = cos 𝛾 , 𝑟𝜖 = sin𝛾

6.Compute the noisy image: 𝑧𝑡 = 𝑟𝑠 . 𝑦 + 𝑟𝜖 . 𝜖

7.Predict the noise by the NN: Ƹ𝜖 = 𝑓𝜃(𝑧𝑡, 𝑡, 𝑥)

8.Predict the image: Ƹ𝑧𝑡−1 = (𝑧𝑡−𝑟𝜖 . Ƹ𝜖) / 𝑟𝑠

9.Compute the loss on the noise: = L θ = 𝜖 − Ƹ𝜖 2

10.Minimize L

For one sample

𝛾
𝑟𝑠

𝑟𝜖

concentration thickness deformation mask

y x

𝜖

𝑧𝑡 Ƹ𝜖 = 𝑓𝜃(𝑧𝑡,𝑡,𝑥)

𝜖 − Ƹ𝜖



A stochastic generator

The generated process depends on the noise and enable to generate an ensemble of likely high-resolution images.

Spread

True image

Reliability



Preliminary result
TARGET

Generated field in anomaly
(SIT HighRes – SIT LowRes)

Generated SIT fields
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More on power spectrums

Large-scale
Low-res = high-res

medium-scale (fully deterministic and predictable)
Ensemble mean > Ensemble members

Fine-scale (probabilistic)
Ensemble members > Ensemble mean ?

Finest-scale (probabilistic and unpredictable)
Ensemble mean = Low-res



Anomaly Vs full field generation

NN

NN

Anomaly generation

Full-field generation

Full-field induces large-scale biases

True image

True image



Conclusion

• Diffusion models can be used to generate a realistic sea ice thickness field

• Many implementation choices have been made:

• Dataset creation: smoothing

• Choice of input features: guided by observable variables

• Model architecture:  Residual UNET

• Diffusion type: continuous time

• Training: Loss computed on the noise

• Generation: deterministic generation (the noise is only drawn once)

• Many hyperparameters

• What is the more sensitive choice?

• Next step: inference with observation data

Julien.brajard@nersc.no
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