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Motivation

Physical model (NeXtSIM) forecastSatellite observation product (CS2SMOS)

At 20km, ~20 times 
more energy in the 

model

Satellite product does not resolve small scales 
in sea ice thickness (e.g. leads)



Our Objective: downscaling

Low-resolution observation High-resolution sea ice thicknessDownscaling 
Model

Other low-resolution observations

Neural network



Our Objective: downscaling

Low-resolution observations High-resolution sea ice thicknessDownscaling 
Model

probabilistic

Deterministic downscaling: 𝑦 = 𝑓 𝑥

𝑥 𝑦

Probabilistic downscaling: 𝑃(𝑦|𝑥)



What do we need?

✓A training set of matching pairs of low-resolution/high-resolution fields

✓A probabilistic model

✓Relevant metrics for validation

✓Apply to observation



Dataset constitution

Principle: Using high-resolution NeXtSIM simulations [Ólason et al., 2022] and process them to match the resolution of the 
observations. 

NeXtSIM sea ice thickness (res ~3km)

Smoothing with a Gaussian kernel 
(size 33 km)

Reprocessed neXtSIM CS2SMOS (observational product)

𝑦 𝑥



Dataset constitution

Same procedure for Sea Ice concentration, divergence and shear (to be used as input feature)

Gaussian kernel (33km) 
CS2SMOS

𝑦 𝑥1
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Gaussian kernel (12km)
+ noise 

Gaussian kernel (27km)
+ bias correction 

Gaussian kernel (45km)
+ bias correction 

Dataset: 𝑥1, 𝑥2, 𝑥3, 𝑥4 , 𝑦

✓ Divergence and Shear are transformed into 
the total deformation

✓ A land mask is added
✓ Samples in freezing season:

✓ Training: 2013-2020 (1157 samples)
✓ Validation: 2020-2022 (360 samples)
✓ Test: 2022-2023 (180 samples)

OSI SAF

OSI SAF

OSI SAF

https://archive.norstore.no/pages/public/datasetDetail.jsf?id=10.11582/2024.00126

Download the dataset

https://archive.norstore.no/pages/public/datasetDetail.jsf?id=10.11582/2024.00126


What do we need?

✓A training set of matching pairs of low-resolution/high-resolution fields

✓A probabilistic model

✓Relevant metrics for validation

✓Apply to observation



Generative machine learning

Probabilistic downscaling: 𝑃(𝑦|𝑥)

Generate an ensemble of realization of high-resolution sea ice thickness 𝑦
knowing low-resolution fields 𝑥
x: condition, context, prompt

Example of a prompt:
"Realistic image of a ship navigating in the 
Arctic sea-ice”

Diffusion models!

Used by DALL-E, Midjourney, …

https://openart.ai

https://openart.ai/


Generative machine learning

Probabilistic downscaling: 𝑃(𝑦|𝑥)

Generate an ensemble of realization of high-resolution sea ice thickness 𝑦
knowing low-resolution fields 𝑥
x: condition, context, prompt

Diffusion models!

Used by DALL-E, Midjourney, …

low-resolution context 𝑥

concentration thickness deformation mask

High-resolution sea ice 
thickness



Applying the diffusion model to sea ice super-resolution

Low-resolution context 𝑥

concentration thickness deformation mask

Noise

Generative process

High-resolution increment High-resolution thickness



Diffusion models – how do they work?

A neural network as a recursive denoiser

…
NNNN NN NN

Low-resolution context 𝑥

concentration thickness deformation mask



Training a diffusion model

The noising process is straightforward
High-resolution increment 

from the training set

…

Add 
Gaussian 

noise

One training sample (draw a level of noise between 0 and 1):

Input feature TargetNN simulation

NN Loss



Implementation details

NN

Low-res context (x)

High-res noisy image (z)

Diffusion time 0 < 𝑡 < 1

High-res denoised image

Sinusoidal 
embedding

Residual UNET
(3.9 millions parameters)



Generation January 1, 2021

From the low-
resolution tickness

The truth

Generated ensemble of sea ice thickness



What do we need?

✓A training set of matching pairs of low-resolution/high-resolution fields

✓A probabilistic model

✓Relevant metrics for validation

✓Apply to observation



Different “products”

Individual members Ensemble mean Spread

Used to assess 
realism

Used to assess 
accuracy

Used to assess 
uncertainty



Accuracy of the super-resolution

Error low-resolution Error AI ensemble mean

Root-mean square error  (RMSE) 
of:
Low-resolution: 0.16 m
AI product: 0.13 m
Improvement: 20%



Realism



What do we need?

✓A training set of matching pairs of low-resolution/high-resolution fields

✓A probabilistic model

✓Relevant metrics for validation

✓Apply to observation



Generation from observations
From the low-resolution 
thickness (CS2SMOS)

Generated ensemble of sea ice thickness + other observations



Observations 2020-2021



Case study for prediction from April 2023

CTRL: initialization with SIC and SIT 
observations (NOAA and CS2SMOS)
SUPER: initialization with category SIC 
observations (SuperICE)
Obs: SIC observations (NOAA)

Courtesy of Yiguo Wang



Take-home message

• Diffusion models can be used to generate accurate and realistic high-resolution sea ice 
thickness fields

• Better accuracy and better realism compared with low-resolution field

• A model trained on a realistic physical simulations can be applied, without retraining, 
on observations (a few artifacts can appear)

• Super-resolution using diffusion models can be applied to other sea ice variables 
(actually, any geophysical variable)

• The dataset (both physical simulations and AI generation) is available for download

Julien.brajard@nersc.noContact me!



Observation spectrum

Spectrum of the observations reconstruction Spectrum of the NeXtSIM reconstruction



Anomaly Vs full field generation

NN

NN

Anomaly generation

Full-field generation

Full-field induces large-scale biases

True image

True image



Ensemble score

Ratio Spread / RMSE

Another training with only thickness and 
concentration in the context



Input features



Input features
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