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Motivation \E

Satellite observation product (CS2SMOQS) Physical model (NeXtSIM) forecast

At 20km, ~20 times
more energy in the
model
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Our Objective: downscaling

Downscaling

Low-resolution observation >
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Our Objective: 5ownscaling | S
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Low-resolution observations Downsga:i”g High-resolution sea ice thickness
Mode '

Deterministic downscaling: v = f(x)

Probabilistic downscaling: P(v|x)
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What do we need?

v'A training set of matching pairs of low-resolution/high-resolution fields
v'A probabilistic model
v Relevant metrics for validation

\/Apply to observation



Dataset constitution

Principle: Using high-resolution NeXtSIM simulations [Olason et al., 2022] and process them to match the resolution of the

observations.

Reprocessed neXtSIM
NeXtSIM sea ice thickness (res ~3km) P

Smoothing with a Gaussian kernel
(size 33 km)
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Dataset constitution

Divergence Concentration Thickness

Shear

Same procedure for Sea Ice concentration, divergence and shear (to be used as input feature)
NeXtSIM

Gaussian kernel (33km)
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Reprocessed NeXtSIM Observational / q 19)
Dataset: (| x4, x5, X3, X4|, vV

V o) X1

Gaussian kernel (12km)
+ noise

Gaussian kernel (27km)
+ bias correction

Gaussian kernel (45km)
+ bias correction

v Divergence and Shear are transformed into
the total deformation
v" Aland mask is added
v" Samples in freezing season:
v’ Training: 2013-2020 (1157 samples)
v’ Validation: 2020-2022 (360 samples)
v' Test: 2022-2023 (180 samples)

Download the dataset



https://archive.norstore.no/pages/public/datasetDetail.jsf?id=10.11582/2024.00126
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What do we need?

v'A training set of matching pairs of low-resolution/high-resolution fields
v'A probabilistic model
v Relevant metrics for validation

\/Apply to observation



Generative machine learning

Probabilistic downscaling: P(v|x)
Generate an ensemble of realization of high-resolution sea ice thickness y
knowing low-resolution fields x
x: condition, context, prompt

Diffusion models!
oo Used by DALL-E, Midjourney, ...

Example of a prompt:
"Realistic image of a ship navigating in the

Arctic sea-ice”

https://openart.ai



https://openart.ai/

High-resolution sea ice
thickness

Generative machine learning
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Probabilistic downscaling: P(v|x)
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Generate an ensemble of realization of high-resolution sea ice thickness y
knowing low-resolution fields x
x: condition, context, prompt
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Diffusion models!
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Applying the diffusion model to sea ice super-resolution

Low-resolution context x

Noise
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Diffusion models — how do they work?

A neural network as a recursive denoiser

9|5
concentration

thickness
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Training a diffusion model &

High-resolution increment
from the training set

The noising process is straightforward

Add
Gaussian
noise

One training sample (draw a level of noise between 0 and 1):

Input feature NN simulation Target




Implementation details

Low-res context (x)

o«
High-res noisy image (z)
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Sinusoidal
embedding

Residual UNET
(3.9 millions parameters)

High-res denoised image




Generation January 1, 2021

Generated ensemble of sea ice thickness

resolution tickness
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What do we need?

v'A training set of matching pairs of low-resolution/high-resolution fields
v'A probabilistic model
v Relevant metrics for validation

\/Apply to observation
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Different “products”

Individual members Ensemble mean
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realism accuracy uncertainty



Accuracy of the super-resolution
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What do we need?

v'A training set of matching pairs of low-resolution/high-resolution fields
v'A probabilistic model
v Relevant metrics for validation

\/Apply to observation



Generation from observations

Generated ensemble of sea |ce thlckness
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From the low-resolution
thickness (CS2SMOS)

+ other observations
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Observations 2020-2021

SIT low-res 20201022 SIT Al 20201022




,.
=
Z

=
—=

2

Case study for prediction from April 2023

Pan-Arctic SIE prediction

CTRL: initialization with SIC and SIT 16 1
observations (NOAA and CS2SMOQS)
SUPER: initialization with category SI 14 N D
observations (SuperlCE)

Obs: SIC observations (NOAA)

Values (106 km?)
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Courtesy of Yiguo Wang
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Take-home message

can be used to generate and high-resolution sea ice
thickness fields

* Better accuracy and better realism compared with low-resolution field

* A model trained on a can be applied ,
on observations (a few artifacts can appear)

* Super-resolution using diffusion models can be applied to other sea ice variables
(actually, any geophysical variable)

* The dataset (both physical simulations and Al generation) is for download

4Julien.brajard@nersc.no

Contact me!



Observation spectrum

Spectrum of the observations reconstruction
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Spectrum of the NeXtSIM reconstruction
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Anomaly Vs full field generation

Anomaly generation
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Full-field generation

Full-field induces large-scale biases



Ensemble score
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Another training with only thickness and
concentration in the context
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Input features

Trial inputs
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I DEF, SIT
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Input features {zesa

Trial 11 - SIC, SIT, DEF Trial 7 - DEF, SIT Trial 11 - SIC, SIT, DEF Trial 7 - DEF, SIT
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