Super-resolution of satellite observations of

sea ice thickness using diffusion models and
physical modeling
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Motivation %
Satellite observation product (CS2SMOQS) Physical model (NeXtSIM) forecast

At 20km, ~20 times
more energy in the
model

== (bservation
= = Model

103 102
Wavelength (km)

| _ Satellite product does not resolve small scales
0.0 . 1.0 1.5 . . .
Sea Ice Thick in sea ice thickness (e.g. leads)

’ |
5 2.0 2.5 3.0
kness (m)




Our Objective: downscaling © NERSC
Low-resolution observation Downscaling > High-resolution sea ice thickness
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Our Objective: downscaling Gosa
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Low-resolution observations Downsga:i”g High-resolution sea ice thickness
Mode '

Deterministic downscaling: v = f(x)

Probabilistic downscaling: P(v|x)
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What do we need?

v'A training set of matching pairs of low-resolution/high-resolution fields
v'A probabilistic model
v Relevant metrics for validation

\/Apply to observation
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Dataset constitution

Principle: Using high-resolution NeXtSIM simulations [Olason et al., 2022] and process them to match the resolution of the
observations.

2SM ional
NeXtSIM sea ice thickness (res ~3km) Reprocessed neXtSIM CS2S | OS (observational product)

Smoothing with a Gaussian kernel
(size 33 km)
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Dataset constitution

Divergence Concentration Thickness

Shear

Same procedure for Sea Ice concentration, divergence and shear (to be used as input feature)
NeXtSIM

Gaussian kernel (33km)
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Reprocessed NeXtSIM Observational / q 19)
Dataset: (| x4, x5, X3, X4|, vV

V o) X1

Gaussian kernel (12km)
+ noise

Gaussian kernel (27km)
+ bias correction

Gaussian kernel (45km)
+ bias correction

v Divergence and Shear are transformed into
the total deformation
v" Aland mask is added
v" Samples in freezing season:
v’ Training: 2013-2020 (1157 samples)
v’ Validation: 2020-2022 (360 samples)
v' Test: 2022-2023 (180 samples)

Download the dataset



https://archive.norstore.no/pages/public/datasetDetail.jsf?id=10.11582/2024.00126
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What do we need?

v'A training set of matching pairs of low-resolution/high-resolution fields
v'A probabilistic model
v Relevant metrics for validation

\/Apply to observation



Applying the diffusion model to sea ice super-resolution

Noise Low-resolution context x
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Diffusion models — how do they work?

A neural network as a recursive denoiser
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Implementation details

Low-res context (x)

High-res noisy image (z)
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Sinusoidal
embedding

Residual UNET
(3.9 millions parameters)

High-res denoised image




Generation January 1, 2021

Generated ensemble of sea ice thickness

From the low-

resolution tickness
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What do we need?

v'A training set of matching pairs of low-resolution/high-resolution fields
v'A probabilistic model
v Relevant metrics for validation

\/Apply to observation
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Different “products”

Individual members Ensemble mean Spread
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realism accuracy uncertainty



Accuracy of the super-resolution
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What do we need?

v'A training set of matching pairs of low-resolution/high-resolution fields
v'A probabilistic model
v Relevant metrics for validation

\/Apply to observation



From the low-resolution
thickness (CS2SMOS)

Generation from observations

Generated ensemble of sea ice thickness + other observations
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Observations 2020-2021

SIT low-res 20201022 SIT Al 20201022
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See the next presentations to evaluate the potential of this
product



Observation spectrum

Spectrum of the observations reconstruction
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Spectrum of the NeXtSIM reconstruction
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Input features

Trial inputs
11 SIC, SIT, DEF
6 SIC, SIT
I DEF, SIT
3 SIT
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Take-home message €=esa 1.
can be used to generate and high-resolution sea ice
thickness fields
* Better accuracy and better realism compared with low-resolution field
* A model trained on a can be applied ,

on observations (a few artifacts can appear)

* Super-resolution using diffusion models can be applied to other sea ice variables
(actually, any geophysical variable)

* The dataset (both physical simulations and Al generation) is for download

4Julien.brajard@nersc.no

Contact me!



Anomaly Vs full field generation

Anomaly generation
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Full-field generation

Full-field induces large-scale biases



Ensemble score
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Another training with only thickness and
concentration in the context



Input features {zesa

Trial 11 - SIC, SIT, DEF Trial 7 - DEF, SIT Trial 11 - SIC, SIT, DEF Trial 7 - DEF, SIT
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